April 1988 Revised July 1999 74F160A • 74F162A Synchronous Presettable BCD Decade Counter

FAIRCHILD

SEMICONDUCTOR

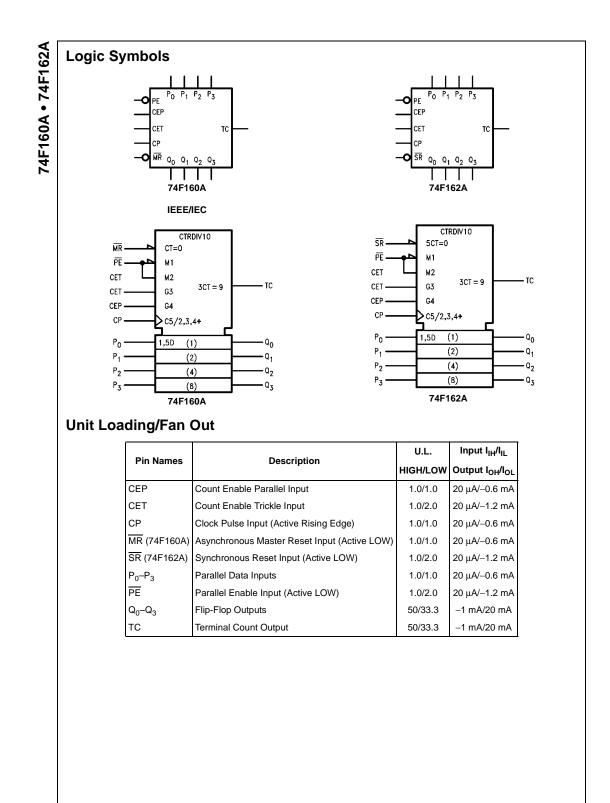
74F160A • 74F162A Synchronous Presettable BCD Decade Counter

General Description

The 74F160A and 74F162A are high-speed synchronous decade counters operating in the BCD (8421) sequence. They are synchronously presettable for applications in programmable dividers. There are two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multistage counters. The F160A has an asynchronous Master Reset input that overrides all other inputs and forces the outputs LOW. The F162A has a Synchronous Reset input that overrides counting and parallel loading and allows all outputs to be simultaneously reset on the rising edge of the clock. The F160A and F162A are high speed versions of the F160 and F162.

Features

- Synchronous counting and loading
- High-speed synchronous expansion
- Typical count rate of 120 MHz


Ordering Code:

Order Number	Package Number	Pac	kage Description					
74F160ASC	M16A	6-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow						
74F160ASJ	M16D	16-Lead Small Outline Package (SC	DP), EIAJ TYPE II, 9	5.3mm Wide				
74F160APC	N16E	16-Lead Plastic Dual-In-Line Packa	ge (PDIP), JEDEC	MS-001, 0.300 Wide				
74F162ASC	M16A	16-Lead Small Outline Integrated C	ircuit (SOIC), JEDE	C MS-012, 0.150 Narrow				
74F162APC	N16E	16-Lead Plastic Dual-In-Line Packa	ge (PDIP), JEDEC	MS-001, 0.300 Wide				
Connectio	n Diagrams	-		7 1				
Ĭ (I	$\overline{R} = 1 \qquad 1 \\ 1 \qquad 1 \\ 2 \qquad 1 \\ 2 \\ 0 \\ -3 \qquad 1 \\ 1 \\ -1 \\ -2 \\ -5 \qquad 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 $	$ \begin{array}{c} 6 - V_{CC} \\ 5 - TC \\ 4 - Q_0 \\ 3 - Q_1 \\ 2 - Q_2 \\ - Q_2 \end{array} $	$\overline{SR} - 1$ $CP - 2$ $P_0 - 3$ $P_1 - 4$ $P_2 - 5$	$ \begin{array}{c} 16 & -V_{CC} \\ 15 & -TC \\ 14 & -Q_0 \\ 13 & -Q_1 \\ 12 & -Q_2 \\ 14 & -Q_$				
Ĭ ($\overline{R} = 1 \qquad 1$ $CP = 2 \qquad 1$ $P_1 = 2 \qquad 1$ $P_1 = 4 \qquad 1$ $P_2 = 5 \qquad 1$ $P_3 = 6 \qquad 1$	$ \begin{array}{c} $	$CP - 2$ $P_0 - 3$ $P_1 - 4$ $P_2 - 5$ $P_3 - 6$	$ \begin{array}{c} 15 \\ 15 \\ 14 \\ -0_0 \\ 13 \\ -0_1 \\ 12 \\ -0_2 \\ 11 \\ -0_3 \end{array} $				
	$\overline{R} = 1 \qquad 1$ $CP = 2 \qquad 1$ $P_1 = 4 \qquad 1$ $P_2 = 5 \qquad 1$ $P_3 = 6 \qquad 1$ $CP = 7 \qquad 1$	$ \begin{array}{c} 5 & - TC \\ 4 & - Q_0 \\ 3 & - Q_1 \\ 2 & - Q_2 \end{array} $	$CP - 2$ $P_0 - 3$ $P_1 - 4$ $P_2 - 5$	$ \begin{array}{c} 15 \\ 15 \\ 14 \\ -0_0 \\ 13 \\ 12 \\ -0_2 \end{array} $				

www.fairchildsemi.com

74F162A

74F160A

Functional Description

The 74F160A and 74F162A count modulo-10 in the BCD (8421) sequence. From state 9 (HLLH) they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the (F160A) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset (F160A), synchronous reset (F162A), parallel load, count-up and hold. Five control inputs-Master Reset (MR, F160A), Synchronous Reset (SR, F162A), Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET)-determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on SR overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data (Pn) inputs to be loaded into the flip-flops on the next rising edge of CP. With PE and MR (F160A) or SR (F162A) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

The F160A and F162A use D-type edge-triggered flip-flops and changing the \overline{SR} , \overline{PE} , CEP and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

The Terminal Count (TC) output is HIGH when CET is HIGH and counter is in state 9. To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. Please refer to the F568 data sheet. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers. In the F160A and F162A decade counters, the TC output is fully decoded and can only be HIGH in state 9. If a decade counter is preset to an illegal state, or assumes an illegal state when power is applied, it will return to the normal sequence within two counts, as shown in the State Diagram. Logic Equations:

ogic Equations: Coun

State Diagram

15

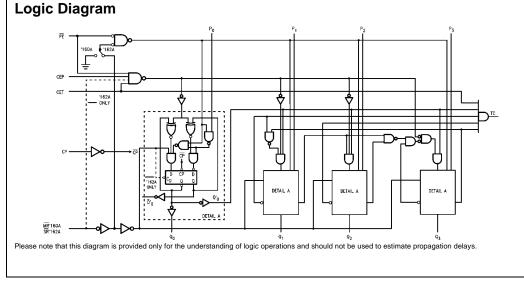
14

Count Enable = CEP × CET × PE
TC =
$$Q_0 \times \overline{Q}_{1} \times \overline{Q}_{2} \times Q_3 \times CET$$

2

10

9


11

Mode Select Table

	*SR	PE	CET	СЕР	Action on the Rising Clock Edge (৴_)
	L	Х	Х	Х	Reset (Clear)
	н	L	Х	Х	Load $(P_n \rightarrow Q_n)$
	н	н	н	н	Count (Increment)
	н	н	L	Х	No Change (Hold)
	н	н	Х	L	No Change (Hold)
*F	or 74'F1	62A on	lv		

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

	-
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to $V_{\mbox{\scriptsize CC}}$
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

Recommended Operating Conditions

Free Air Ambient Temperature
Supply Voltage

0°C to +70°C +4.5V to +5.5V

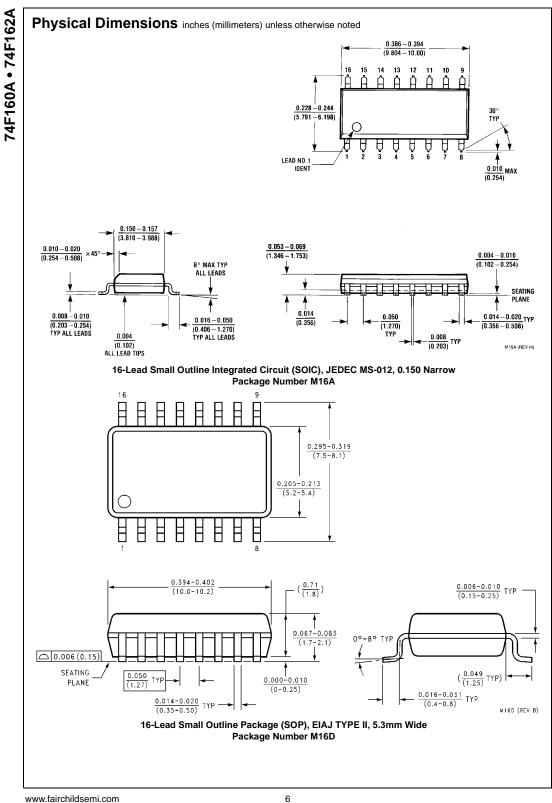
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

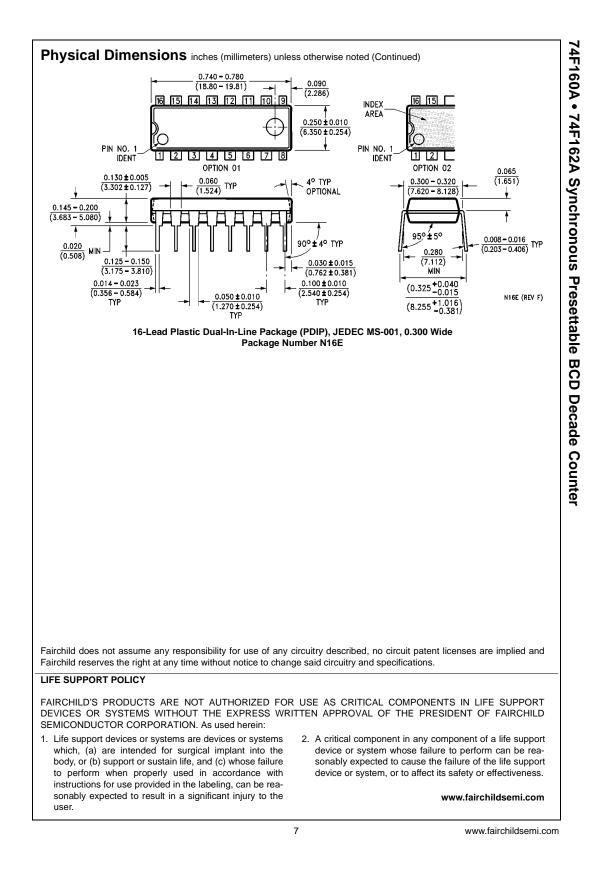
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	V _{cc}	Conditions
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH 10% V _{CC}	2.5			V	Min	$I_{OH} = -1 \text{ mA}$
	Voltage 5% V _{CC}	2.7			v	IVIIII	$I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW 10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA
	Voltage			0.5	v	IVIIII	$I_{OL} = 20 \text{ IIIA}$
IIH	Input HIGH			5.0	μA	Max	V _{IN} = 2.7V
	Current			5.0	μΛ	IVIAA	V _{IN} - 2.7 V
I _{BVI}	Input HIGH Current			7.0	μA	Max	V _{IN} = 7.0V
	Breakdown Test			7.0	μΛ	IVICA	VIN - 7.0V
ICEX	Output HIGH			50	μA	Max	V _{OUT} = V _{CC}
	Leakage Current			50	μΛ	IVIAA	VOUT - VCC
V _{ID}	Input Leakage	4.75			V	0.0	$I_{ID} = 1.9 \ \mu A$
	Test	4.75			v	0.0	All Other Pins Grounded
I _{OD}	Output Leakage			3.75	μA	0.0	$V_{IOD} = 150 \text{ mV}$
	Circuit Current			0.10	μι	0.0	All Other Pins Grounded
IIL	Input LOW			-0.6	mA	Max	$V_{IN} = 0.5V \text{ (CP, CEP,P}_n, \overline{MR} \text{ (F160A))}$
	Current			-1.2	mA	Max	$V_{IN} = 0.5V \text{ (CET, } \overline{SR} \text{ (F162A), } \overline{PE} \text{)}$
I _{OS}	Output Short-Circuit Current	-60		-150	mA	Max	V _{OUT} = 0V
I _{CC}	Power Supply Current		37	55	mA	Max	V _O = HIGH

Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		
		Min	Тур	Max	Min	Max	Min	Max		
f _{MAX}	Maximum Count Frequency	90	120		75		80		MHz	
t _{PLH}	Propagation Delay, Count	3.5	5.5	7.5	3.5	9.0	3.5	8.5		
t _{PHL}	CP to Q _n (PE Input HIGH)	3.5	7.5	10.0	3.5	11.5	3.5	11.0	ns	
t _{PLH}	Propagation Delay, Load	4.0	6.0	8.5	4.0	10.0	4.0	9.5		
t _{PHL}	CP to Q _n (PE Input LOW)	4.0	6.0	8.5	4.0	10.0	4.0	9.5	ns	
t _{PLH}	Propagation Delay	5.0	10.0	14.0	5.0	16.5	5.0	15.0		
t _{PHL}	CP to TC	5.0	10.0	14.0	5.0	15.5	5.0	15.0	ns	
t _{PLH}	Propagation Delay	2.5	4.5	7.5	2.5	9.0	2.5	8.5	ns	
t _{PHL}	CET to TC	2.5	4.5	7.5	2.5	9.0	2.5	8.5	115	
t _{PHL}	Propagation Delay	5.5	9.0	12.0	5.5	14.0	5.5	13.0	ns	
	MR to Q _n (74F160A)									
t _{PHL}	Propagation Delay	4.5	8.0	10.5	4.5	12.5	4.5	11.5	ns	
	MR to TC (74F160A)									


AC Operating Requirements


Symbol	Parameter	T _A =	+25°C	$T_A = -55^{\circ}C$	C to +125°C	T _A = 0°C to +70°C V _{CC} = +5.0V		Units	
		V _{CC} =	+5.0V	V _{CC} =	+5.0V				
		Min	Мах	Min	Max	Min	Max		
t _S (H)	Setup Time, HIGH or LOW	4.0		5.5		4.0			
t _S (L)	P _n to CP (74F160A)	5.0		5.5		5.0		ns	
t _S (H)	Setup Time, HIGH or LOW	5.0				5.0			
t _S (L)	P _n to CP (74F162A)	5.0				5.0		ns	
t _H (H)	Hold Time, HIGH or LOW	2.0		2.5		2.0		115	
t _H (L)	P _n to CP	2.0		2.5		2.0			
t _S (H)	Setup Time, HIGH or LOW	11.0		13.5		11.5			
t _S (L)	PE or SR to CP	8.5		10.5		9.5			
t _H (H)	Hold Time, HIGH or LOW	2.0		2.0		2.0		ns	
t _H (L)	PE or SR to CP	0		0		0			
t _S (H)	Setup Time, HIGH or LOW	11.0		13.0		11.5			
t _S (L)	CEP or CET to CP	5.0		6.0		5.0			
t _H (H)	Hold Time, HIGH or LOW	0		0		0		ns	
t _H (L)	CEP or CET to CP	0		0		0			
t _W (H)	Clock Pulse Width (Load)	5.0		5.0		5.0		ns	
t _W (L)	HIGH or LOW	5.0		5.0		5.0		115	
t _W (H)	Clock Pulse Width (Count)	4.0		5.0		4.0			
t _W (L)	HIGH or LOW	6.0		8.0		7.0			
t _W (L)	MR Pulse Width, LOW	5.0		5.0		5.0		ns	
	(74F160A)								
t _{REC}	Recovery Time	6.0		6.0		6.0		ns	
-	MR to CP (74F160A)								

74F160A • 74F162A

www.fairchildsemi.com

5

